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ABSTRACT
For processing data on the Web, recommender systems and
SPARQL are two popular paradigms, which however have
rather different characteristics. SPARQL is a declarative
language on RDF graphs which allows a user to precisely
specify the desired information. In contrast, a recommender
system suggests certain items to a user, based on similarity
to other users or items. As the data to be processed by a
recommender may be an RDF graph as well, the question
arises whether both processing paradigms can benefit from
each other. RecSPARQL fills this gap by extending the
syntax and semantics of SPARQL to enable a generic and
flexible way for collaborative filtering and content-based rec-
ommendations over arbitrary RDF graphs. Our experiments
on the MovieLens data set demonstrate the applicability of
our approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering

General Terms
Algorithms, Design, Experimentation

Keywords
Semantic Web Applications, Recommendation Systems,
SPARQL Extension, Content-based, Collaborative Filtering

1. INTRODUCTION
One of the initial works on extracting semantic data from

Wikipedia asked the question “What have Innsbruck and
Leipzig in common?” [4]. With the success of Semantic Web
initiatives like DBPedia [3] and other knowledge bases like
YAGO [21], queries that express connections between differ-
ent real-world objects can be approached by analyzing the
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paths in the underlying RDF graph. SPARQL 1.1 [8] was
designed to find such explicit connections, e.g. by means of
property paths. However, asking for the commonalities of
both cities may mean more than simply asking for common
objects to which we can find paths. We might also be inter-
ested to figure out whether both cities are similar where the
notion of similarity is treated in a more fuzzy sense.

Asking for similarity between objects is one task of rec-
ommender systems and therefore the facet of similarity has
been widely researched in the area of recommender sys-
tems [1] with a special focus on certain domains like mu-
sic [10, 14], movies [12], or books [16] where a similarity
function is adopted to predict new items.

Obviously, recommenders and SPARQL can be combined
by using SPARQL for processing the recommender’s input
data, respectively output data. For instance, the approach
followed in [17] and similar works is depicted in Fig. 1. In
this scheme the task is separated into (A) pre-processing, (B)
computation of recommendations, and (C) post-processing.
Typically, the recommender component in (B) is outfitted
with classic recommendation algorithms and it expects a set
of users, their consumed items, and assigned ratings as in-
put. As output it indicates users their recommended items,
and prediction scores.

In the context of a collaborative filtering approach, (B)
computes for each user a set of n similar users, i.e the neigh-
borhood, from which recommendations are derived. Sup-
pose, that one requires to customize this building process in
order to impose certain characteristics on to the neighbor-
hoods. For instance, one might want to consider neighbor-
hoods where the age of each of their members differs by δ
wrt. the user u for whom recommendations are produced.
Another kind of neighborhoods could be one in which each
of their members is geographically close to u.

These simple examples of customizing the neighborhood
are a feature which is missing in existing recommenders for
the Semantic Web. A system as the one depicted in Fig.
1 does not provide a shared recommendation model among
(A), (B) and (C) in order to be able to consider all possible
restrictions.

In this paper, we demonstrate that recommenders and
SPARQL may complement each other more deeply, giving
us the opportunity to provide integrated systems which will
offer more adequate and interesting results to users than pos-
sible so far. To the best of our knowledge, RecSPARQL is
the first extension of SPARQL that allows the customiza-
tion of recommendations to offer the best of two worlds: a



Figure 1: Abstract not integrated recommendation
system

tight integration with the Semantic Web, building upon the
flexibility inherited from SPARQL for highly parameteriz-
able queries, combined with common recommendation tech-
niques, i.e. content-based and collaborative filtering. Over-
all, our contributions can be summarized as follows:

• We propose RecSPARQL, an extension of SPARQL
for customized recommendations to fill the gap be-
tween recommender systems and SPARQL.

• RecSPARQL is not restricted to a pre-defined and
fixed ontology but can be applied to arbitrary RDF
graphs from any domain.

• We also provide a standalone recommender repository
as an extension to Sesame1, RecSesame, which makes
it possible to run recommendation queries by simply
changing your project’s dependencies or replacing the
libraries.

The remainder of the paper is structured as follows. In
Section 2 we briefly introduce the basics of recommender
systems. Section 3 gives an overview of RecSesame. In Sec-
tion 4 we present an introduction to RecSPARQL queries
and the underlying recommendation model, whereas Sec-
tion 5 explains some details of how recommendations are
computed. Experiments in Section 6 demonstrate the ap-
plicability of our approach followed by the related work in
Section 7 and a conclusion with an outlook on future work
in Section 8.

2. RECOMMENDER SYSTEMS
Recommender Systems (RS) are widely used to suggest

items of interest, where the amount of available information
exacerbates the process of taking a decision. In order to
supply such suggestions, classical RS need some knowledge
about user preferences or the features of items, which forms
the underlying recommendation model. Whereas user pref-
erences consist of some personal information (age, gender,
spoken language, ...) and ratings (e.g. user u rated item i
with 3/5 stars), features of items are based on representa-
tive attributes like price or description. The task of a rec-
ommender system is to utilize existing knowledge to predict
which of the non-rated items might be the most valuable
suggestions for a user.

There are two widely-used techniques for that: (1) Content-
Based Filtering focuses on properties of items. The sugges-
tions are based on the degree of similarity between already

1Framework for storing, querying, and reasoning RDF
(http://www.openrdf.org)

consumed items and unconsumed items. Typically, a sim-
ilarity function takes two items with a set of (meaningful)
features as input and returns a value representing the de-
gree of similarity. (2) Collaborative Filtering is based on the
relationship between users and items. The basic idea is that
one can get the best recommendations from someone who
has a similar taste. In this case, the similarity of two items
is not derived from objective properties but from the ratings
of users who tend to rate in a similar way.

3. RECSESAME OVERVIEW
RecSPARQL is an extension of SPARQL to generate rec-

ommendations based on the knowledge contained in RDF
graphs. For the evaluation of RecSPARQL queries, we
extended the Sesame SPARQL engine (RecSesame) with
several recommender algorithms. A basic architecture is de-
picted in Fig. 2.
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Figure 2: RecSesame Overview

Input Data. In contrast to other recommender systems,
which require highly structured inputs, there are no precon-
ditions, neither on the schema of the data nor on the ontol-
ogy. This is achieved by an syntax-driven approach, which
consists in defining the current recommendation model ad-
hoc within the query. Hence, any kind of RDF graphs that
is supported by Sesame can be utilized enabling flexible and
dynamic recommendations.
Query Layer. RecSPARQL extends the syntax of SPARQL
with recommender functionalities. We included a new query
type, RECOMMEND, which allows us to project generated rec-
ommendations and a BASED ON clause to define the underly-
ing recommendation model for computing similarities. From
a technical perspective, we enriched the existing SPARQL
parser of Sesame to support RecSPARQL as well. Section
4 gives a more detailed introduction to the syntax.
Algebra Layer. Indeed, we utilized existing SPARQL 1.1
algebra operators to express the semantic of RecSPARQL
where possible, nonetheless it was inevitable to introduce
also some new operators to define e.g. a similarity measure
for items and users. A more detailed explanation on that
can be found in Section 5.
Processing Layer. New algebra operators, which can-
not be mapped to existing ones, require a wide range of
changes to Sesames processing layer. We implemented our



own SailRecommenderRepository that computes similari-
ties and generates recommendations efficiently based on the
recommendation model defined within a RecSPARQL query.
Storage Layer. Our SailRecommenderRepository can use
the same loaded data as the original one for SPARQL 1.1
queries, hence we support both RecSPARQL and SPARQL
queries despite our changes to Sesame. To support our new
algebra operators more efficiently, we included a caching
layer for sets of queries where the recommendation model
does not vary significantly. Section 6 shows some experi-
ments to demonstrate the applicability of our approach.

4. RECSPARQL QUERIES
The syntax of RecSPARQL adheres to the principles of

SPARQL 1.1, but allows us to produce recommendations
over arbitrary RDF graphs. A basic query has the following
structure:

RECOMMEND [Projected Variables]

USING [Recommendation Algorithm]

WHERE { [Basic Graph Pattern] }

BASED ON { [RecSPARQL Type Pattern]

[RecSPARQL Model Building Pattern] }

Similar to SPARQL SELECT, we can use the RECOMMEND

clause to specify the variables that should appear in the
query result and the WHERE clause defines the Graph Pat-
tern that matches a subgraph of the input RDF graph. The
USING clause expects the name of an implemented recom-
mendation algorithm, whereas the BASED ON specifies the
underlying recommendation model. Currently supported
strategies include content-based filtering (CB), collaborative
filtering (CF ) and hybrid recommendations (HR).

4.1 Recommendation Model
Recommendation algorithms need a highly structured model

of the data called recommendation model to compute e.g.
similarities between users and items. However, RDF graphs
exhibit almost complementary characteristics due to their
inherent diversity and unstructured data. And without a
clear definition of items, users and their relations it is not
feasible to apply any recommendation techniques at all. To
overcome this gap, RecSPARQL enables to specify this
missing definition within the BASED ON clause. At first place,
one has to identify items and users in the current RDF
graphs. This is done by so-called RecSPARQL Type Pattern
(RTP) which are expressed through type relationships as
in SPARQL. Currently, the following RecSPARQL-specific
type classes are supported:

• recsparql:User: user who consumes items

• recsparql:Item: item that is consumed by users

• recsparql:UserRating: user-item rating

• recsparql:ItemRating: global item rating

We use the dataset in Fig. 3 as running example. For sim-
plification, rated movies are interpreted as watched movies.
Fig. 4 shows a RecSPARQL query, whose purpose is to rec-
ommend movies which are similar in terms on their genres
using a content-based approach. The RTP (line 6+7) defines
?movie as the recommended item and ?user is a person for
whom we want to recommend new items.

1 RECOMMEND ?user ?movie.REC ?RATING USING CB
2 WHERE {
3 ?user movies:rated ?persRating .
4 ?persRating movies:ratedMovie ?movie }
5 BASED ON {
6 ?user rdf:type recsparql:User .
7 ?movie rdf:type recsparql:Item .
8 ?movie movies:genre ?genre }

Result: Bob, Star Wars, 1
Bob, Gravity, 0.5

Figure 4: RecSPARQL query that recommends
movies

But its not enough to identify items and users only. If
we want to benefit from the Semantic Web as a meaningful
knowledge base for recommendations, we have to find ways
to utilize other manifold information contained in a RDF
graph, e.g. attributes of items or the different ways of how
a user is connected to an item. Analogous to Basic Graph
Pattern, we can define a RecSPARQL Model Building Pat-
tern (RMBP) that matches a subgraph with the desired in-
formation that we want to consider in our recommendation
model. A RMBP is in turn composed of multiple so-called
property graphs, each representing one selected piece of in-
formation. This might be for example a path that describes
the movies a user watched or a path which selects an at-
tribute like the genre that classifies a movie. Depending on
the chosen recommender algorithm, its important to specify
appropriate features. Whereas for an collaborative filter-
ing approach, we need paths between users and consumed
items, a contend-based one needs paths from items to some
attributes. As the current contend-based example (Fig. 4,
line 8) defines genre to be the only attribute of interest for a
movie, there is a path from the recommended item ?movie to
its attribute ?genre. For a collaborative filtering approach
as show in Fig. 5, we specify paths to express which items
(?movie) was consumed by whom ?user (cf. line 15+16).

1 RECOMMEND ?user ?movie.REC
2 ?RATING USING CF
3 WHERE {
4 ?user movie:rated ?persRating .
5 ?persRating movie:ratedMovie ?movie .
6 ?persRating movie:rating ?uRating .
7 ?user user:age ?age .
8 FILTER ( ?age >= ?age.REC - 5 ||
9 ?age <= ?age.REC + 5 )
10 }
11 BASED ON {
12 ?user rdf:type recsparql:User .
13 ?movie rdf:type recsparql:Item .
14 ?uRating rdf:type recsparql:UserRating .
15 ?user movie:rated ?persRating .
16 ?persRating movie:ratedMovie ?movie}

Result: Bob, Gravity, 6.3
Bob, Star Wars, 1.4

Figure 5: RecSPARQL query with FILTER

4.2 Variables
RecSPARQL offers two different types of variables. The

first type equals usual SPARQL variables that are used in
the WHERE clause to match a subgraph that serves as input
for the recommendation model. In Fig. 4, they correspond to
?user and ?movie which represent users with their watched
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Figure 3: an RDF-graph that depicts a scenario where users watch movies and rate them.

movies. The second type of variables are RecSPARQL-
specific and distinguished with the suffix .REC. They pro-
vide both insight and control into the recommending pro-
cess. The key point of such a process is the computation of
similarities, e.g. between two movies based on their genre.
In this case, both movies and their similarity value can be
easily accessed by means of the variable ?movie that repre-
sents a watched movie, ?movie.REC that represents a movie
recommendation and the reserved variable ?SIMscore that
contains the computed similarity value of both. A further
reserved variable ?RATING provides the predicted rating for
a recommendation. Moreover, both types of variables can
be used the same way to reduce the amount of resulting
mappings, e.g. with (xsd:double(?SIMscore) >= 0.5) which
restricts the output to only those recommendations, which
have a higher similarity value than 0.5.

4.3 Advanced Features.
As flexibility is the main goal of RecSPARQL, queries

can be highly customized. For instance, the CF query in
Fig. 5 aims to output suggestions from like-minded users
that are five years younger or older (cf. line 8+9). Such
a filter affects the so-called neighborhood [7] of each user,
e.g. restricts who is compared to whom. Being able be
to parametrize neighborhoods dynamically within a query
enables not only more efficient computations but has also
an high influence on the predicted rating accuracy as we
will demonstrate in Section 6.

Furthermore, the query in Fig. 5 shows the difference be-
tween contend-based (CB) and collaborative filtering (CF)
in RecSPARQL. CF is based on similarities between users,
hence the recommender needs to know in which respect users
should be considered to be similar. In our example, we de-
fine watched movies as a criteria for similarity. Thus, the
RecSPARQL Model Building Pattern (RMBP) has to spec-
ify which movie has been watched by whom. The current
example defines this relation as a path from a person ?user

to its consumed item ?movie.
Comparing the results of the query in Fig. 5 to the query

in Fig. 4, we can observe that “Gravity” got the highest pre-
dicted rating for “Bob” since there is only one similar user
“Alice” who rated this movie with a high value. Such ratings
are represented as another class of nodes, that can be speci-
fied as type within the RecSPARQL Type Pattern (RTP).

The recsparql:UserRating represents explicit ratings of items
given by a user; the recsparql:ItemRating represents a pub-
lic available rating of items given by an external entity. The
query in Fig. 6 is again contend-based, but to improve the
accuracy of recommendations, user ratings are considered.

As RecSPARQL is based on SPARQL 1.1, it also sup-
ports grouping and aggregation as shown in Fig. 6. This
CB query not only specifies what kind of recommendations
to compute, but also how to pack the results. We project
a unique group for each user and recommended movie. If
the movie is recommended multiple times, we average the
ratings and use HAVING to restrict the groups.

1 RECOMMEND ?user ?movie.REC
2 (AVG(?RATING) AS ?avgRat)
3 USING CB
4 WHERE {
5 ?user movie:rated ?persRating .
6 ?persRating movie:ratedMovie ?movie .
7 ?persRating movie:rating ?uRating .
8 ?movie movie:publicRating ?pubRating }
9 BASED ON {
10 ?user rdf:type recsparql:User .
11 ?movie rdf:type recsparql:Item .
12 ?uRating rdf:type recsparql:UserRating .
13 ?movie movis:genre ?genre}
14 GROUP BY
15 ?user ?movie.REC ?pubRating.REC
16 HAVING (?avgRat > ?pubRating.REC)

Result: Bob, Gravity, 6.75
Bob, Star Wars, 5.0

Figure 6: RecSPARQL query with GROUP BY

5. COMPUTING RECOMMENDATIONS
Graph pattern matching is the mechanism in SPARQL

to retrieve data. In RecSPARQL this is used to match
the input data required for constructing the recommenda-
tion model, which is in turn used by the recommendation
algorithms. Thus, RecSPARQL is based on the semantics
of SPARQL 1.1 where possible, and even the new clauses
introduced in Section 4 are mapped to existing SPARQL
operators at first glance. However, recommender specific
computations that are applied to the retrieved data are no
longer expressible with the SPARQL 1.1 algebra only, as
they are based on complex similarity measurements.



In order to give more details about how the recommenda-
tion model is constructed from the subgraph that matched
a RecSPARQL query and how it is used by the recommen-
dation algorithms, we first need to define some formalisms
based on the semantic of SPARQL 1.1. For a more detailed
description of RDF and SPARQL we refer to [11] and [8,
15], respectively.

Let I, B and L be respectively the set of all IRIs, the set
of all literals and the set of all blank nodes. Then a triple
(s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called an RDF
triple. An RDF graph is a set of RDF triples. Let an RDF
term be T ∈ (I ∪ B ∪ L). Then µ is a solution mapping,
a partial function µ : V → T . The domain of µ, dom(µ), is
the subset of V where µ is defined. Two solution mappings
µ1 and µ2 are compatible if, for every variable v ∈ dom(µ1)
∩ dom(µ2), then µ1(v) = µ2(v). Note that two mappings
with disjoint domains are always compatible. Next, Ω is
a multiset of solution mappings, obtained by evaluating a
graph pattern as described in [15]. We report the definition
of the join between Ω1 and Ω2 as:

Ω1 ./ Ω2 ={µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2

are compatible mappings};

Let ΩW be the multiset of solution mappings obtained by
evaluating the graph pattern PW specified in the WHERE
clause. Moreover, let Ω′

W be the multiset of solution map-
pings obtained by evaluating a renamed graph pattern P ′

W ,
where the suffix “.REC ” is appended to each variable.

A RecSPARQL-specific evaluator allows us to generate
ΩB , the multiset of solution mappings resulting from the
evaluation of the RMBP in the BASED ON clause. The so-
lution mappings within ΩB are defined over three variables,
either the variable user and a renamed variable user (with
suffix “‘.REC ”) or the variable item and a renamed vari-
able item (with suffix “‘.REC ”) and a third variable which
represents the similarity score ?SIMscore.

With the multiset of mapping solutions obtained from the
different clauses of the RecSPARQL query, it is possible to
build the final result. Let ΩREC be the resulting multiset:

ΩREC = ΩW ./ ΩB ./ Ω′
W

Computing predicted ratings. ΩREC does not contain
the predicted rating ?RATING. Given a µ ∈ ΩREC , this
mapping is computed and added as follows. A new multiset
of solution mappings is built to incorporate the predicted
rating.

ΩRecSPARQL = {µ | µ′ ∈ ΩREC , dom(µ) = {dom(µ′) ∪
?RATING}, ∀ v ∈ dom(µ′), µ(v) = µ(v′) and

µ(?RATING) is calculated as described}

A predicted rating is a linear function of the similarity score
and the explicit ratings or metrics specified through the
RTP. Let’s assume that the following variables have been
specified by means of the TPRTP :

?user : resparql:User

?item : resparql:Item

?userRating : resparql:UserRating

?itemRating : resparql:ItemRating

To simplify the illustration formulas, variables that repre-
sent the values of certain mappings will hereinafter be used:

u = µ(?user)

u′ = µ(?user.REC)

i = µ(?item)

i′ = µ(?item.REC)

r(u, i) = µ(?userRating)

r(u′, i′) = µ(?userRating.REC)

r(i) = µ(?itemRating)

r(i′) = µ(?itemRating.REC)

sim = µ(?SIMscore), can be sim(u,u′) or sim(i,i′)

depending on the kind of approach triggered

(user-based or item-based).

Ratings for a CB query. In case all variables are avail-
able on each solution mapping, then we aim to calculate
r(u, i′):

r(u, i′) =

(r(u, i) + r(i))

2
+ sim(i,i′) ∗

(r(u′, i′) + r(i′))

2
2

In case item-ratings are missing or not provided:

r(u, i′) =
r(u, i) + sim(i,i′) ∗ r(u′, i′)

2

In case neither user-ratings nor item-ratings are provided:

r(u, i′) = sim(i,i′)

Ratings for a CF query. In case all variables are avail-
able on each solution mapping, then we aim to calculate
r(u, i′):

r(u, i′) = sim(u,u′) ∗
(r(u′, i′) + r(i′))

2

In case item-ratings are missing or not provided:

r(u, i′) = sim(u,u′) ∗ r(u′, i′)

In case neither user-ratings nor item-ratings are provided:

r(u, i′) = sim(u,u′)

Finally, we assign the following value to the reserved vari-
able:

?RATING←− r(u, i′)

6. EXPERIMENTS
We demonstrate the applicability of RecSPARQL by a

case study that emphasizes the advantages of a customizable
neighborhood. This feature strongly relies on a tight inte-
gration of the recommendation algorithms with SPARQL
and wouldn’t be feasible if we treated both paradigms as
independent boxes. We will see that being able to adjust
the neighborhood in accordance with the underlying RDF
graph enables us more adequate and interesting results than
possible so far. The dataset used in the experiments was col-
lected through a real life application called MovieLens2 and
mapped into the RDF format.

2GroupLens Research Project, University of Minnesota
http://grouplens.org/datasets/movielens/. The queries
were designed for the smallest dataset, as it contains both
user and item features.



First, we will start with the RecSPARQL query in Fig. 7
that has no restriction on the neighborhood. It computes the
degree of preference of each pair of users and items. Since the
query is not parameterized, each user has a neighborhood
whose size equals the size of the domain of users. Items
will be recommended multiple times and recommendations
that are based on a low similarity score are also included
in the result. This adheres to RecSPARQL’s philosophy:
the customization of recommendation queries is left to the
discretion of the query writer.

1 RECOMMEND ?user ?user.REC ?movie.REC
2 ?SIMscore ?RATING USING CF
3 WHERE {
4 ?user ml:rates ?personalRating .
5 ?personalRating ml:ratedMovie ?movie .
6 ?personalRating ml:hasRating ?uRating }
7 BASED ON {
8 ?user rdf:type recsparql:User .
9 ?movie rdf:type recsparql:Item .
10 ?uRating rdf:type recsparql:UserRating .
11 ?user ml:rates ?personalRating .
12 ?personalRating ml:ratedMovie ?movie }

Figure 7: Query without restricted neighborhood

As next, we consider a set of three collaborative filter-
ing queries. These queries gradually narrow the neighbor-
hood of each user to produce more tailored recommenda-
tions. Hence, we do not compare each pair of users anymore,
but include some restrictions. The first query Q1 in Fig. 8
filters the neighborhood for those users who have a similar-
ity score above 0.5. For a collaborative approach this score
is based on the movies watched by both users.

1 RECOMMEND ?user ?user.REC ?movie.REC
2 ?SIMscore ?RATING USING CF
3 WHERE {
4 ?user ml:rates ?personalRating .
5 ?personalRating ml:ratedMovie ?movie .
6 ?personalRating ml:hasRating ?uRating .
7 FILTER(xsd:double(?SIMscore) > 0.5 ) }
8 BASED ON {
9 ?user rdf:type recsparql:User .
10 ?movie rdf:type recsparql:Item .
11 ?uRating rdf:type recsparql:UserRating .
12 ?user ml:rates ?personalRating .
13 ?personalRating ml:ratedMovie ?movie }

Figure 8: RecSPARQL query Q1

Query Q2 in Fig. 9 furtherly narrows the user’s neigh-
borhood by only considering users 5 years younger or older.
Finally, query Q3 in Fig. 10 adds a geographical constraint
by applying a filter to the zipcode. In addition to this, some
content-based user properties such as age, gender and occu-
pation have been added to the BASED ON clause. In this
way the similarity of users is now only partially based on the
movies watched. Moreover, the query has been parametrized
with the placeholder %K%, representing the age difference and
%L%, representing the required proximity.

Fig. 11 compares the actual impact of the neighborhood
restriction of Q1, Q2, and Q3(a) on their respective neigh-
borhood size. We can observe that for the most restric-
tive query Q3(a) most of the users exhibit a rather small
neighborhood. This can even end up having users without

1 RECOMMEND ?user ?age ?user.REC ?movie.REC
2 ?age.REC ?SIMscore ?RATING USING CF
3 WHERE {
4 ?user ml:rates ?personalRating .
5 ?personalRating ml:ratedMovie ?movie .
6 ?personalRating ml:hasRating ?uRating .
7 ?user ml:hasAge ?age .
8 FILTER (
9 abs(xsd:integer(?age) - xsd:integer(?age.REC)) <= 5) .
10 FILTER(xsd:double(?SIMscore) > 0.5 ) }
11 BASED ON {
12 ?user rdf:type recsparql:User .
13 ?movie rdf:type recsparql:Item .
14 ?uRating rdf:type recsparql:UserRating .
15 ?user ml:rates ?personalRating .
16 ?personalRating ml:ratedMovie ?movie }

Figure 9: RecSPARQL Q2

1 RECOMMEND ?user ?age ?zip ?user.REC ?movie.REC
2 ?age.REC ?zip.REC ?SIMscore ?RATING USING CF
3 WHERE {
4 ?user ml:rates ?personalRating .
5 ?personalRating ml:ratedMovie ?movie .
6 ?personalRating ml:hasRating ?uRating .
7 ?user ml:hasAge ?age .
8 ?user ml:hasZipCode ?zip .
9 FILTER (
10 abs(xsd:integer(?age) - xsd:integer(?age.REC)) <= %K%) .
11 FILTER (
12 abs(xsd:integer(?zip) - xsd:integer(?zip.REC)) <= %L%) .
13 FILTER(xsd:double(?SIMscore) > 0.75 ) }
14 BASED ON {
15 ?user rdf:type recsparql:User .
16 ?movie rdf:type recsparql:Item .
17 ?uRating rdf:type recsparql:UserRating .
18 ?user ml:rates ?personalRating .
19 ?personalRating ml:ratedMovie ?movie
20 ?user ml:hasAge ?age .
21 ?user ml:hasGender ?gender .
22 ?user ml:hasOccupation ?occupation }

Parameters: (a) K = 5, L = 1000
(b) K = 10, L = 2000
(c) K = 20, L = 4000
(d) K = 40, L = 6000

Figure 10: RecSPARQL query Q3
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Figure 11: Number of users per neighborhood size
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Figure 12: Number of users per number of recom-
mended items

a neighborhood in the worst case. It is not surprising to see
that the less restrictive the queries are, the larger the neigh-
borhood size is. Certainly, this influences also the number
of recommended items per query as shown in Fig. 12. The
more the neighborhood is restricted, the less recommenda-
tions are generated.

To illustrate the impact of narrowing the neighborhood
more deeply and to understand its advantage, we proceed
having a closer look on some user recommendations. There-
fore, we chose four users who watched movies and assigned
ratings to them. We evaluated Q3 (a-d) for those users and
analyzed at first their averaged top movie ratings. For query
Q3(a) only one of the four evaluated users got recommen-
dations and the results are not comparable to the rest of
the queries. For the remaining queries the results shown in
Tab. 1 show that the more we restrict our neighborhood,
the lower this average is. However, this is an expected be-
haviour since our specified neighborhood criteria does not
consider the item rating itself, hence we are also removing
potentially good rated movie recommendations. But this
does not mean that the quality of the recommended movies
is therefore reduced. Recommended movies with a lower rat-
ing might fit the needs of a user if they come from a more
restricted neighborhood, e.g. the same country or the same
age. This assumption is underpinned by the averaged simi-
larity of a user and his neighbours as illustrated in Tab. 1.
Actually, the more restrictive the neighborhood is, the more
similar the people are. This means, although we are getting
recommendations with a lower averaged rating, the recom-
mended movies might fit better since they are derived from
users with a higher similarity score.

7. RELATED WORK
To the best of our knowledge, RecSPARQL is the first

extension of SPARQL that allows to customize recommen-
dations. But there has been lot of work done dealing with se-
mantic data for recommender systems. Policarpio et al. [17]
presented a solution where SPARQL is used to extract data
from RDF triplestores, which in turn is used as input for
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Figure 13: Average of similarity score for different
parameters k and l and 4 users

(K=10,
L=2000)

(K=20,
L=4000)

(K=40,
L=6000)

∅rating 1.6199 1.8899 2.0268
∅similarity 0.2541 0.2285 0.2205

Table 1: Averaged movie ratings and similarity
scores

the recommender engine. But their approach is still not
reaping the full benefits of a close integration of a seman-
tic data representation with state-of-the-art recommenda-
tion algorithms. Other research efforts use public Semantic
Web sources to enrich the contextual knowledge about items
and users [5, 9, 13], ranging from music [14] and news rec-
ommendations [6] to the suggestion of relevant topics [20] or
books [16]. However, such systems are developed to rec-
ommend a certain type of item and are often restricted
to work with a fixed built-in ontology. In contrast, Rec-
SPARQL comes with the flexibility for recommendations
on arbitrary RDF graphs, as the recommender engine is
customized within a RecSPARQL query. This includes not
only the recommender technique but also the attributes that
should be taken into account for computing similarities. Yet,
there is not much work on such kind of flexible recommender
systems that use a language to specify desired recommen-
dations. Adomavicius et al. [2] introduced REQUEST, a
recommendation language with support for so-called multi-
dimensional queries. It extends the traditional two dimen-
sional view between items and users with any other dimen-
sions, e.g. time, while offering OLAP-type aggregation and
filtering operations. However, REQUEST does not make use
of Semantic Web data to improve the quality of recommen-
dations. In [18], the authors presented a smooth integration
of a recommender system into a DBMS called RecDB, where
most computations are done in the DMBS layer instead the
application layer. In contrast to our approach, the recom-
mendation model is build once in advance and not created
dynamically during query execution time. Although this ap-
proach has advantages in terms of query execution time, its
much less customizable, since even small changes on the rec-
ommendation model, e.g. the considered attributes, require



a complete new loading phase. Further, RecDB is based on a
highly structured relational data model as input and there-
fore incapable of capturing the diversity and flexibility of an
RDF graph. Noteworthy related work has been also done
in the area of personalized information retrieval techniques.
[19, 22] make use of ontologies to represent profiles, which
in turn are used to re-rank search results. This process can
be also seen as some kind of automatized recommendation,
since the list of suggested items is somehow aligned with
contextual knowledge about users.

8. CONCLUSION
With RecSPARQL, we can demonstrate the benefits of

a tight integration of recommender systems with SPARQL.
Their smooth interplay enables freely customizable recom-
mendations on arbitrary RDF graphs while taking advan-
tage of rich knowledge sources of the semantic web. More-
over, if we consider the continuously increasing datasets in
the semantic web, techniques for retrieving the most rele-
vant information become indispensable. In future work, we
will further enhance the integration of both paradigms to
support more recommendations techniques and to increase
the expressiveness of RecSPARQL, e.g. by means of sub-
queries as filters or property paths to express for more so-
phisticated connections between users, items and their fea-
tures.
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